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Supplement to “Spatial disease mapping using
directed acyclic graph auto-regressive

(DAGAR) models”

Abhirup Datta∗ , Sudipto Banerjee§ , James S. Hodges† and Leiwen Gao§

S1 Additional simulation analyses

S1.1 Data generated using a smoother Gaussian Process

As pointed out by one reviewer, in the simulation settings of Section 3.1, the data
generation model using an exponential GP becomes same as the DAGAR model for the
path graph. While this is not true for the grid and USA graphs, and the results were
generally consistent across the choice of the graphs, in this section we tried a different
data generation model to assess the performance of the areal models. Keeping all other
model specifications same, we generated the spatial random effects wi using a smoother
Matérn3/2 GP instead of an exponential GP. This ensures that the data generation
model does not correspond to any of the six models fitted to the data for any of the
three graphs.
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Figure S1: MSE as a function of the true ρ (x-axis) for the simulation data analysis
using data generated from a Matérn3/2 GP

We first look at the mean square error in terms of estimating the latent spatial
random effects in Figure S1. We see similar trends as in the case of exponential GP.
The MSEs from the ICAR models are much higher, with the scaled ICAR, once again,

∗Johns Hopkins University abhidatta@jhu.edu
†University of Minnesota hodge003@umn.edu
§University of California Los Angeles sudipto@ucla.edu
§University of California Los Angeles gaoleiwen@ucla.edu

c© 0000 International Society for Bayesian Analysis DOI: 0000

imsart-ba ver. 2014/10/16 file: supplement.tex date: August 8, 2019

http://bayesian.org
mailto:abhidatta@jhu.edu
mailto:hodge003@umn.edu
mailto:sudipto@ucla.edu
mailto:gaoleiwen@ucla.edu
http://dx.doi.org/0000
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producing lower MSE than the original ICAR and sparse GLMM. The sparse GLMM
was better than the ICAR for path and grid graph but was worse for the USA graph.
The proper CAR and the two DAGAR models produced lower MSEs than these ICAR-
based models for all three graphs, with the improvement more prominent for smaller ρ.
For smaller ρ, we also see that the DAGAR models produce lowest MSE among all the
six models, whereas for larger ρ, the MSEs for most of the models are similar.

We also briefly summarize the comparison of the models based on inference (CP)
on the parameters involved. We only look at the common parameters β1, β2 and σ2

e .
We do not consider ρ as, unlike the exponential GP, the spatial decay parameter in
the Matérn3/2 GP does not have a simple relationship with ρ. Figure S2 provides the
coverage probabilities of the three parameters as a function of ρ. We see once again that
the trends observed for the exponential GP data analysis in Section 3.1 carry over to
here. The coverages for the regression coefficients are close to 95% for all the models
except the sparse GLMM. For σ2

e , all models produce under-coverage for larger values
of ρ. For smaller values of ρ, however, the coverage of the proper CAR and the two
DAGAR models are close to 95%.

S1.2 A non-Gaussian example

In this Section, we conduct a simulation study using a non-Gaussian response. We
generate independent yi ∼ Poisson(exp(x>i β + wi)) where the spatial random effect
vector w = (w1, w2, . . . , wk)> are generated as realizations from an exponential GP,
akin to Section 3.1. We generated xi comprising two independent normal variables with
mean 0 and standard deviation 0.1 which limits exponential values in regression within
the maximum floating point double number in R. Settings for other parameters, τw and
ρ, are the same as Gaussian data. The priors also remain the same for all models only
excluding τe which is not included in the model. The same set of six candidate models
are fitted.

We first compare the MSEs which are quite close for all the models except for the
sparse GLMM and ICAR (for path graph) which produce significantly higher MSEs.
The DAGAR models produced the lowest MSEs for USA graph, and joint lowest MSEs
along-with the proper CAR model for the path graph. We then compare the estimation
of ρ for the DAGAR and proper CAR models, as for an exponential GP, ρ corresponds
to the correlation at unit distance and the data generation ensured that on average
the neighboring units are separated by unit distance (see Section 3.1). The estimates
and confidence bands in Figure S4 demonstrates how the DAGAR model produces
accurately estimates the spatial correlation between neighbors even when the data is
non-Gaussian, whereas the estimates from the CAR model are far off akin to the Gaus-
sian case. Similarly. the coverage probabilities of parameters in Figure S5, repeat the
trends observed in Figure 5 for the Gaussian case, with all models except the sparse
GLMM offering close to 95% coverage for the regression coefficients, and the DAGAR
models offering substantially improved coverage for ρ than the proper CAR model.
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(f) USA: β2
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Figure S2: Coverage probabilities of the parameters as a function of the true ρ (x-axis)
for the simulation data analysis using Gaussian data generated from a Matérn3/2 GP
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(c) USA

Figure S3: MSE as a function of the true ρ (x-axis) for the simulation data analysis
using Poisson responses
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Figure S4: Estimate and confidence bands of ρ as a function of the true ρ (x-axis) for
the simulation data analysis using Poisson responses
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(f) USA: β2

●
●

●

●

●

●

●

●
●

0.00

0.25

0.50

0.75

1.00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
rho

C
ov

er
ag

e 
P

ro
ba

bi
lit

y 
of

 r
ho

Path

● CAR
DAGAR
DAGAR_OF

(g) Path: ρ

●

●

●

●

●

●
● ●

●
0.25

0.50

0.75

1.00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
rho

C
ov

er
ag

e 
P

ro
ba

bi
lit

y 
of

 r
ho

Grid

● CAR
DAGAR
DAGAR_OF

(h) Grid: ρ

● ●
●

●
●

●
●

●

●

0.00

0.25

0.50

0.75

1.00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
rho

C
ov

er
ag

e 
P

ro
ba

bi
lit

y 
of

 r
ho

USA

● CAR
DAGAR
DAGAR_OF

(i) USA: ρ

Figure S5: Coverage probabilities of the parameters as a function of the true ρ (x-axis)
for the simulation data analysis using Poisson responses
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S2 Proofs

S2.1 Proof of Theorem 1

Let r = rank(Q) and Q+ denote the Moore-Penrose inverse of Q. Then, by Theorem 1
part (b) of Higham (1990), there exists a permutation P such that

PQ+P> = R>R where R =

[
R1 R2

0 0

]
Here R1 is r × r upper triangular matrix with positive diagonal elements. Let D1 =
diag(R1) and R∗1 = D−11 R1, which has ones on the diagonal. We can now write

R = DU where U =

[
R∗1 D−11 R2

0 I

]
and D =

[
D1 0
0 0

]
Since U> is a lower triangular matrix with one on the diagonals, so is L = U−>. Hence,
PQP> = (I−B)>F (I−B) where F = D+2 and B = I−L is a strictly lower triangular
matrix.

S2.2 Proof of Theorem 2

First of all, as T is a tree, it is always possible to have an ordering π such that nπ(i) = 1
for any i 6= π(1). For example, the orderings corresponding to any pre-order or breadth-
first tree traversal of T will satisfy this. Without loss of generality we rename the nodes
such that π = {1, . . . , k} and for i > 1, p(i) denotes the directed neighbor of i in π
implying p(i) < i. Letting w0 = 0, p(1) = 0 and nπ(1) = 0, the model in (2.5) reduces
to wi = ρ wp(i) + (1 − ρ2)0.5εi where εi are independent standard normal variables.

We shall show that for any positive integers j ≤ i ≤ k, cov(wi, wj) = ρdij . We prove
this using the strong form of mathematical induction. Since p(2) = 1, it is easy to
verify this for i = 2. We assume that this is true for i = 2, . . . , i − 1. It immediately
follows that var(wi) = ρ2var(wp(i)) + (1− ρ2)var(εi) = 1. For any j < i, cov(wi, wj) =

ρ cov(wp(i), wj) = ρ1+dp(i)j (by induction). Since T is acyclic and nπ(i) = 1 for all i > 1,
the shortest path from j to i runs through p(i). Hence, dij = dp(i)j + 1 and the result
follows.

S2.3 Proof of Theorem 3

If i + j = i′ + j′, then (i, j) and (i′, j′) are never neighbors. Hence, without loss of
generality, we prove the result for π = (S2, . . . , Sm+n)T where Sr = {(i, j) | i + j = r}.
Let d((i, j), (i′, j′)) = |i − i′| + |j − j′| denote the Manhattan distance on G, and wSr
denote the sub-vector of w corresponding to the indices in Sr. It is enough to show by
induction on r that wSr ∼ N(0, (ρDr )−1) where Dr denotes the distance matrix on Sr.
This holds trivially for r = 2. Let us assume that it holds true for r−1. If (1, r−1) ∈ Sr,
we define w(0, r − 1) = ρw(1, r − 1) + ε(0, r − 1) where ε(0, r − 1) ∼ N(0, 1/(1 − ρ2))
is independent of w. If (r − 1, 1) ∈ Sr we define w(r − 1, 0) similarly. Let w∗Sr−1

be the
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augmented vector which includes w(0, r − 1) or w(r − 1, 0) or both, along with wSr−1 .
From the construction, w(0, r − 1) = ρ2w(1, r − 2) + ρε(1, r − 1) + ε(0, r − 1) implying
var(w(0, r − 1)) = 1 and cov(w(0, r − 1), w(1, r − 2)) = ρ2. Hence cov(w∗Sr−1

) = ρD
∗
r

where D∗r is the augmented distance matrix corresponding to S∗r−1. Letting ρ2 = u, we
have for any (i, j) and (i′, j′) in Sr,

cov(w(i, j),w(i′, j′)) =
u

(1 + u)2
(cov(w(i− 1, j), w(i′ − 1, j′)) + cov(w(i, j − 1), w(i′ − 1, j′))

+ cov(w(i− 1, j), w(i′, j′ − 1)) + cov(w(i, j − 1), w(i′, j′ − 1))) + I(i = i′)
1− u
1 + u

=
u

(1 + u)2
(ρ|i−i

′+1|+|j−j′−1| + 2ρ|i−i
′|+|j−j′| + ρ|i−i

′−1|+|j−j′+1|) + I(i = i′)
1− u
1 + u

If i = i′ then j = j′ and the expression above equals 1. If i < i′, then j > j′ and
|i − i′ + 1| + |j − j′ − 1| = (i′ − i − 1) + (j − j′ − 1) = |i − i′| + |j − j′| − 2. Similarly,
|i− i′ − 1|+ |j − j′ + 1 = |i− i′|+ |j − j′|+ 2. So, ρ|i−i

′+1|+|j−j′−1| + 2ρ|i−i
′|+|j−j′| +

ρ|i−i
′−1|+|j−j′+1| = ρ|i−i

′|+|j−j′|(1/u+ 2 + u). Hence, the results follows.

S2.4 Proof of Theorem 4

For any vertex i with ni neighbors, let πir denote the set of all permutations π such
that nπ(i) = r. By symmetry, |πir| = k!/(ni + 1) for r = 0, 1, . . . , ni. Also, for any i ∼ j
and r = 0, . . . , ni, let πijr denote the set of all permutations π such that nπ(i) = r
and j ∈ Nπ(i). Then, |πijr| = k!/(ni + 1) × pr(j is among the r directed neighbors of
i) = rk!/(ni(ni + 1)). We now have

Q[i, i] =
1

k!(1− ρ2)

∑
π

1 + (nπ(i) − 1)ρ2 +
∑
j∼i

I(i ∈ Nπ(j))
ρ2

1 + (nπ(j) − 1)ρ2


= 1 +

ρ2

k!(1− ρ2)

 ni∑
r=0

r|πr|+
∑
j∼i

nj∑
r=0

|πjir|
1 + (r − 1)ρ2


= 1 +

niρ
2

2(1− ρ2)
+

ρ2

1− ρ2
∑
j∼i

1

nj(nj + 1)

nj∑
r=1

r

1 + (r − 1)ρ2

= 1 +
niρ

2

2(1− ρ2)
+

ρ2

1− ρ2
∑
j∼i

1

nj(nj + 1)
f(ρ, nj).

To evaluate the non-diagonal entries of Q, we additionally define πijkr to be the set of
all permutations π such that nπ(i) = r and {j, k} ⊆ Nπ(i). Applying the combinatorial
argument used earlier, we see that |πijkr| = r(r − 1)k!/((ni − 1)ni(ni + 1)). Let i ≈ j
implies that there exists at least one node k such that i ∼ k and j ∼ k.

Q[i, j] =
1

k!(1− ρ2)

∑
π

−ρI(i ∼ j) + I(i ≈ j)
∑

k:{i,j}⊆Nπ(k)

ρ2

1 + (nπ(k) − 1)ρ2
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= − ρ

1− ρ2
I(i ∼ j) +

ρ2

k!(1− ρ2)
I(i ≈ j)

∑
k∼N(i)∩N(j)

nk∑
r=0

|πkijr|
1 + (r − 1)ρ2

= − ρ

1− ρ2
I(i ∼ j) +

ρ2

1− ρ2
I(i ≈ j)

∑
k∼N(i)∩N(j)

1

(nk − 1)nk(nk + 1)

nk∑
r=1

r(r − 1)

1 + (r − 1)ρ2

= − ρ

1− ρ2
I(i ∼ j) +

1

1− ρ2
I(i ≈ j)

∑
k∼N(i)∩N(j)

(
1

2(nk − 1)
− 1

(nk − 1)nk(nk + 1)
f(ρ, nk)

)
.

S2.5 Proof of Theorem 5

We write Qπ(ρ) and Q(ρ) as Qπ and Q hiding the dependence on ρ except when neces-

sary. From Theorem 4 we have for i = 3, . . . , k− 2, Qii = 3+6ρ2+ρ4

3(1+ρ2)(1−ρ2) , Qi,i+1 = − ρ
1−ρ2

and Qi,i+2 = ρ2

3(1+ρ2)(1−ρ2) . Hence,

||Q||2F =
k

9(1 + ρ2)2(1− ρ2)2
(
(3 + 6ρ2 + ρ4)2 + 18ρ2(1 + ρ2)2 + 2ρ4

)
+ o(k)

where the o(k) term arises from rows and columns corresponding to the nodes at the
extreme right or left.

Now using left-to-right or right-to-left ordering, from (2.4), a typical term in the
quadratic form w′Qπw will be of the form (wi − ρwi−1)2/(1 − ρ2). Hence, for i =

1, 2, . . . , k − 2, Qπ:ii = 1+ρ2

1−ρ2 , Qπ:i,i+1 = − ρ
1−ρ2 and Qπ:i,i+2 = 0. So,

||Q−Qπ||2F =
k

9(1 + ρ2)2(1− ρ2)2
(
(3 + 6ρ2 + ρ4 − 3(1 + ρ2)2)2 + 2ρ4

)
+ o(k)

=
k

9(1 + ρ2)2(1− ρ2)2
(4ρ8 + 2ρ4) + o(k)

Hence, the result follows.

S2.6 Proof of Theorem 6

We index the nodes of the grid as (i, j), and entries of Qπ and Q as Qπ:(ij),(i′j′) and
Q(ij),(i′j′) respectively for 1 ≤ i, i′, j, j′ ≤ m. Like in the proof of Theorem 5, it only
suffices to evaluate the Frobenius norms for the interior points of the grid (having 4
neighbors each of whom also have 4 neighbors) as the contribution from the remaining
terms will be o(m2). Hence from Theorem 3 we have for 3 ≤ i, i′, j, j′ ≤ m− 2,

Q(ij),(ij) =
1 + ρ2 + ρ2s(ρ)/5

1− ρ2

Q(ij),(i+1,j) = Q(ij),(i,j+1) = − ρ

1− ρ2

Q(ij),(i+2,j) = Q(ij),(i,j+2) =
1

1− ρ2
(1/6− s(ρ)/60)
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Q(ij),(i+1,j+1) = Q(ij),(i+1,j−1) =
2

1− ρ2
(1/6− s(ρ)/60)

Summing up, we have

||Q||2F = m2(Q2
(ij),(ij) + 4(Q2

(ij),(i+1,j) +Q2
(ij),(i+2,j) +Q2

(ij),(i+1,j+1)) + o(1))

=
m2

(1− ρ2)2
(
(1 + ρ2 + ρ2s(ρ)/5)2 + 4ρ2 + 20(1/6− s(ρ)/60)2

)
+ o(m2)

Now, without loss of generality we assume that the DAGAR precision matrix Qπ(ρ)
was constructed by ordering the nodes in increasing order of (i+j). Then, a typical term

in the quadratic form w′Qπw will be of the form 1+ρ2

1−ρ2 (wij − ρ
1+ρ2 (wi,j−1 + wi−1,j))

2.
Hence, we will have

Qπ:(ij),(ij) =
1 + ρ2 + 2ρ2/(1 + ρ2)

1− ρ2

Qπ:(ij),(i+1,j) = Qπ:(ij),(i,j+1) = − ρ

1− ρ2

Qπ:(ij),(i+2,j) = Qπ:(ij),(i,j+2) = Qπ:(ij),(i+1,j+1) = 0

Qπ:(ij),(i+1,j−1) =
ρ2

(1 + ρ2)(1− ρ2)

Subtracting, we have

||Qπ −Q||2F = m2((Qπ:(ij),(ij) −Q(ij),(ij))
2 + 4Q2

(ij),(i+2,j)+

2(Qπ:(ij),(i+1,j−1) −Q(ij),(i+1,j−1))
2+

2Q2
(ij),(i+1,j+1) + o(1))

Hence, the result follows.
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